

Dy-Mark

Chemwatch: 42-9970 Version No: 13.1

Safety Data Sheet according to WHS Regulations (Hazardous Chemicals) Amendment 2020 and ADG requirements

Chemwatch Hazard Alert Code: 4

Issue Date: 20/04/2022 Print Date: 20/04/2022 S.GHS.AUS.EN.E

SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

Product name	Dy-Mark Protech Dry Graphite Lubricant
Chemical Name	Not Applicable
Synonyms	42031502
Proper shipping name	AEROSOLS
Chemical formula	Not Applicable
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Application is by spray atomisation from a hand held aerosol pack Use according to manufacturer's directions.
--------------------------	--

Details of the supplier of the safety data sheet

Registered company name	Dy-Mark
Address	89 Formation Street Wacol QLD 4076 Australia
Telephone	+61 7 3327 3004
Fax	+61 7 3327 3009
Website	http://www.dymark.com.au
Email	info@dymark.com.au

Emergency telephone number

Association / Organisation	Dy-Mark
Emergency telephone numbers	+61 7 3327 3099
Other emergency telephone numbers	Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the WHS Regulations and the ADG Code.

ChemWatch Hazard Ratings

	Min	Max	
Flammability	4		
Toxicity	1	1	0 = Minimum
Body Contact	2		1 = Low
Reactivity	1		2 = Moderate
Chronic	2		3 = High 4 = Extreme

Poisons Schedule	Not Applicable
Classification [1]	Aerosols Category 1, Aspiration Hazard Category 1, Skin Corrosion/Irritation Category 2, Serious Eye Damage/Eye Irritation Category 2A, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 2
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI

Signal word Dange

Hazard statement(s)

AUH044	Risk of explosion if heated under confinement.
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.
H304	May be fatal if swallowed and enters airways.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H336	May cause drowsiness or dizziness.
H411	Toxic to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P211	Do not spray on an open flame or other ignition source.
P251	Do not pierce or burn, even after use.
P271	Use only outdoors or in a well-ventilated area.
P261	Avoid breathing gas
P273	Avoid release to the environment.
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider.
Do NOT induce vomiting.
IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
If eye irritation persists: Get medical advice/attention.
Collect spillage.
IF ON SKIN: Wash with plenty of water and soap.
IF INHALED: Remove person to fresh air and keep comfortable for breathing.
If skin irritation occurs: Get medical advice/attention.
Take off contaminated clothing and wash it before reuse.

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

P501

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
107-83-5	20-30	2-methylpentane
67-63-0	10-20	isopropanol
7782-42-5	5-10	graphite
115-10-6	40-50	dimethyl ether
Legend:	1. Classified by Chernwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI; 4. Classification drawn from C&L * EU IOELVs available	

Issue Date: 20/04/2022 Print Date: 20/04/2022

Dy-Mark Protech Dry Graphite Lubricant

Eye Contact	 If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	 If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 Avoid giving milk or oils. Avoid giving alcohol. Not considered a normal route of entry.

Indication of any immediate medical attention and special treatment needed

For acute or short term repeated exposures to petroleum distillates or related hydrocarbons:

- Primary threat to life, from pure petroleum distillate ingestion and/or inhalation, is respiratory failure.
- Patients should be quickly evaluated for signs of respiratory distress (e.g. cyanosis, tachypnoea, intercostal retraction, obtundation) and given oxygen. Patients with inadequate tidal volumes or poor arterial blood gases (pO2 50 mm Hg) should be intubated.
- Arrhythmias complicate some hydrocarbon ingestion and/or inhalation and electrocardiographic evidence of myocardial injury has been reported; intravenous lines and cardiac monitors should be established in obviously symptomatic patients. The lungs excrete inhaled solvents, so that hyperventilation improves clearance.
- A chest x-ray should be taken immediately after stabilisation of breathing and circulation to document aspiration and detect the presence of pneumothorax.
- Epinephrine (adrenalin) is not recommended for treatment of bronchospasm because of potential myocardial sensitisation to catecholamines. Inhaled cardioselective
- bronchodilators (e.g. Alupent, Salbutamol) are the preferred agents, with aminophylline a second choice.

 Lavage is indicated in patients who require decontamination; ensure use of cuffed endotracheal tube in adult patients. [Ellenhorn and Barceloux: Medical Toxicology]

Treat symptomatically. for lower alkyl ethers:

BASIC TREATMENT

- Establish a patent airway with suction where necessary.
- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- Administer oxygen by non-rebreather mask at 10 to 15 l/min.
- A low-stimulus environment must be maintained.
- Monitor and treat, where necessary, for shock.
- Anticipate and treat, where necessary, for seizures.
- DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- Positive-pressure ventilation using a bag-valve mask might be of use.
- Monitor and treat, where necessary, for arrhythmias.
- Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- Hypotension without signs of hypovolaemia may require vasopressors.
- Treat seizures with diazepam.
- Proparacaine hydrochloride should be used to assist eye irrigation.

EMERGENCY DEPARTMENT

EWERGENCT DEFARTMENT

- Laboratory analysis of complete blood count, serum electrolytes, BUN, creatinine, glucose, urinalysis, baseline for serum aminotransferases (ALT and AST), calcium, phosphorus and magnesium, may assist in establishing a treatment regime. Other useful analyses include anion and osmolar gaps, arterial blood gases (ABGs), chest radiographs and electrocardiograph.
- ▶ Ethers may produce anion gap acidosis. Hyperventilation and bicarbonate therapy might be indicated.
- Haemodialysis might be considered in patients with impaired renal function.
- Consult a toxicologist as necessary.

BRONSTEIN, A.C. and CURRANCE, P.L

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

For acute or short term repeated exposures to isopropanol:

- Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access.
- Rapid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins. post-ingestion.
- There are no antidotes.
- Management is supportive. Treat hypotension with fluids followed by vasopressors.
- Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes.
- Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding.

SECTION 5 Firefighting measures

Extinguishing media SMALL FIRE: • Water spray, dry chemical or CO2 LARGE FIRE:

Water spray or fog.

Special hazards arising from the substrate or mixture

Fire Incompatibility	Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result
vice for firefighters	
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control fire and cool adjacent area. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. Equipment should be thoroughly decontaminated after use.
Fire/Explosion Hazard	 Liquid and vapour are highly flammable. Severe fire hazard when exposed to heat or flame. Vapour forms an explosive mixture with air. Severe explosion hazard, in the form of vapour, when exposed to flame or spark. Vapour may travel a considerable distance to source of ignition. Heating may cause expansion or decomposition with violent container rupture. Aerosol cans may explode on exposure to naked flames. Rupturing containers may rocket and scatter burning materials. Hazards may not be restricted to pressure effects. May emit acrid, poisonous or corrosive furmes. On combustion, may emit toxic furmes of carbon monoxide (CO). Combustion products include: carbon monoxide (CO) carbon dioxide (CO2) nitrogen oxides (NOX) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions.
	May child clouds of active shoke

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Methods and material for conta	
Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 DO NOT exert excessive pressure on valve; DO NOT attempt to operate damaged valve. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal. Remove leaking cylinders to a safe place if possible. Release pressure under safe, controlled conditions by opening the valve.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling	
Safe handling	The conductivity of this material may make it a static accumulator., A liquid is typically considered nonconductive if its conductivity is below 100 pS/m and is considered semi-conductive if its conductivity is below 10 000 pS/m., Whether a liquid is nonconductive or semi-conductive, the precautions are the same., A number of factors, for example liquid temperature, presence of contaminants, and anti-static additives can greatly influence the conductivity of a liquid. Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs.

	 Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid smoking, naked lights or ignition sources. Avoid contact with incompatible materials. When handling, DO NOT eat, drink or smoke. DO NOT incinerate or puncture aerosol cans. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be requirity checked against established exposure standards to ensure safe working conditions are maintained.
Other information	 Keep dry to avoid corrosion of cans. Corrosion may result in container perforation and internal pressure may eject contents of can Store in original containers in approved flammable liquid storage area. DO NOT store in pits, depressions, basements or areas where vapours may be trapped. No smoking, naked lights, heat or ignition sources. Keep containers securely sealed. Contents under pressure. Store away from incompatible materials. Store in a cool, dry, well ventilated area. Avoid storage at temperatures higher than 40 deg C. Store in an upright position. Protect containers against physical damage. Check regularly for spills and leaks. Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container	 Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	 Avoid reaction with oxidising agents strong acids strong alkalis
+ X	

X — Must not be stored together

0 — May be stored together with specific preventions

+ - May be stored together

Note: Depending on other risk factors, compatibility assessment based on the table above may not be relevant to storage situations, particularly where large volumes of dangerous goods are stored and handled. Reference should be made to the Safety Data Sheets for each substance or article and risks assessed accordingly.

SECTION 8 Exposure controls / personal protection

Control parameters

Occupational Exposure Limits (OEL)

I.	INGREDIENT DATA	

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
Australia Exposure Standards	2-methylpentane	Hexane, other isomers	500 ppm / 1760 mg/m3	3500 mg/m3 / 1000 ppm	Not Available	Not Available
Australia Exposure Standards	isopropanol	Isopropyl alcohol	400 ppm / 983 mg/m3	1230 mg/m3 / 500 ppm	Not Available	Not Available
Australia Exposure Standards	graphite	Graphite (all forms except fibres) (respirable dust) (natural & synthetic)	3 mg/m3	Not Available	Not Available	(e) Containing no asbestos and < 1% crystalline silica.
Australia Exposure Standards	dimethyl ether	Dimethyl ether	400 ppm / 760 mg/m3	950 mg/m3 / 500 ppm	Not Available	Not Available

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
2-methylpentane	1,000 ppm	11000** ppm		66000*** ppm
isopropanol	400 ppm	2000* ppm		12000** ppm
graphite	6 mg/m3	330 mg/m3		2,000 mg/m3
dimethyl ether	3,000 ppm	3800* ppm		7200* ppm
Ingredient	Original IDLH		Revised IDLH	
2-methylpentane	Not Available		Not Available	
isopropanol	2,000 ppm		Not Available	
graphite	1,250 mg/m3		Not Available	
dimethyl ether	Not Available		Not Available	

	Engineering controls are used to remove a hazard or place a be highly effective in protecting workers and will typically be The basic types of engineering controls are: Process controls which involve changing the way a job activ Enclosure and/or isolation of emission source which keeps a "adds" and "removes" air in the work environment. Ventilatio ventilation system must match the particular process and ch Employers may need to use multiple types of controls to pre General exhaust is adequate under normal conditions. If risk obtain adequate protection. Provide adequate ventilation in warehouse or closed storage	independent of worker interactions to provide this high ty or process is done to reduce the risk. selected hazard "physically" away from the worker a n can remove or dilute an air contaminant if designed emical or contaminant in use. vent employee overexposure. of overexposure exists, wear SAA approved respira	th level of protection. and ventilation that strategically I properly. The design of a
	Air contaminants generated in the workplace possess varyin circulating air required to effectively remove the contaminant	g "escape" velocities which, in turn, determine the "c	apture velocities" of fresh
	Type of Contaminant:		Speed:
	aerosols, (released at low velocity into zone of active gene		0.5-1 m/s
	direct spray, spray painting in shallow booths, gas dischar	ge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
Appropriate engineering	Within each range the appropriate value depends on:		
controls	Lower end of the range	Upper end of the range	
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents	
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity	
	3: Intermittent, low production.	3: High production, heavy use	
	4: Large hood or large air mass in motion	4: Small hood-local control only	
	considerations, producing performance deficits within the ex factors of 10 or more when extraction systems are installed The vapour/mist may be highly irritating to the upper respiral pulmonary oedema. Possible neurological symptoms arising neurosis, depression and paranoia. Gastrointestinal disturba produce asthmatic reactions ranging from minor breathing di or may develop without warning for several hours after expo work in situations allowing exposure to this material. Continu impairment. Inhalation hazard is increased at higher temperatures.	or used. ory tract and lungs; the response may be severe end from isocyanate exposure include headache, insom nces are characterised by nausea and vomiting. Pul ficulties to severe allergic attacks; this may occur fo sure. Sensitized people can react to very low doses,	bugh to produce bronchitis and nia, euphoria, ataxia, anxiety monary sensitisation may llowing a single acute exposure and should not be allowed to
Personal protection			
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact the wearing of lenses or restrictions on use, should be c and adsorption for the class of chemicals in use and an their removal and suitable equipment should be readily a remove contact lens as soon as practicable. Lens should a clean environment only after workers have washed ha national equivalent] Close fitting gas tight goggles 	reated for each workplace or task. This should includ account of injury experience. Medical and first-aid pe available. In the event of chemical exposure, begin e d be removed at the first signs of eye redness or irrita	le a review of lens absorption pronnel should be trained in ye irrigation immediately and ation - lens should be removed
Skin protection	See Hand protection below		
Hands/feet protection	 NOTE: The material may produce skin sensitisation in predispoequipment, to avoid all possible skin contact. Contaminated leather items, such as shoes, belts and w No special equipment needed when handling small quar OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber g For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety for 	atch-bands should be removed and destroyed. titities. gloves.	gloves and other protective
Body protection	See Other protection below		
Other protection	No special equipment needed when handling small quantitie OTHERWISE: • Overalls. • Skin cleansing cream. • Eyewash unit. • Do not spray on hot surfaces. • The clothing worn by process operators insulated from e	S.	

Respiratory protection

Type AX Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001,

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the $\ensuremath{\textit{computer-generated}}$ selection:

Dy-Mark Protech Dry Graphite Lubricant

Material	CPI
NEOPRENE	А
BUTYL	С
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С
NITRILE	С
NITRILE+PVC	С
PE/EVAL/PE	С
PVC	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	AX-AUS	-	AX-PAPR-AUS / Class 1
up to 50 x ES	-	AX-AUS / Class 1	-
up to 100 x ES	-	AX-2	AX-PAPR-2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.
- Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

SECTION 9 Physical and chemical properties

Appearance	Black flammable liquid with a solvent odour; not mi	scible with water.	
Physical state	Compressed Gas	Relative density (Water = 1)	0.78-0.82
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	Not Available	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	Not Available	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Available	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	>50
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Immiscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	Not Available	VOC g/L	351.9

SECTION 10 Stability and reactivity

Reactivity	pe section 7		
Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. 		
Possibility of hazardous reactions	ee section 7		
Conditions to avoid	See section 7		
Incompatible materials	See section 7		

Continued...

[•] Generally not applicable.

Hazardous decomposition products

See section 5

SECTION 11 Toxicological information

Information on toxicological effects

	Inhalation of vapours may cause drowsiness and dizziness.	This was the second state of the strength of the test of the test of the first of the second state of the		
Inhaled	Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by sleepiness, reduced alertness, loss of reflexes, lack of co-ordination, and vertigo. Inhalation of aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhalation of toxic gases may cause: Central Nervous System effects including depression, headache, confusion, dizziness, stupor, coma and seizures; respiratory: acute lung swellings, shortness of breath, wheezing, rapid breathing, other symptoms and respiratory arrest; heart: collapse, irregular heartbeats and cardiac arrest; gastrointestinal: irritation, ulcers, nausea and vomiting (may be bloody), and abdominal pain. Inhalation of high concentrations of gas/vapour causes lung irritation with coughing and nausea, central nervous depression with headache and dizziness, slowed reaction time, slurred speech and may progress to unconsciousness. Serious poisonings may result in respiratory depression and may be fatal. Following inhalation, ethers cause lethargy and stupor. Inhaling lower alkyl ethers results in headache, dizziness, weakness, blurred vision, seizures and possible coma. Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. WARNING:Intentional misuse by concentrating/inhaling contents may be lethal.			
Ingestion	Accidental ingestion of the material may be damaging to the Not normally a hazard due to physical form of product. Considered an unlikely route of entry in commercial/industria	health of the individual.		
Skin Contact	This material can cause inflammation of the skin on contact in some persons. The material may accentuate any pre-existing dermatitis condition Repeated exposure may cause skin cracking, flaking or drying following normal handling and use. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream, through, for example, cuts, abrasions or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.			
Eye	This material can cause eye irritation and damage in some p Instillation of isoparaffins into rabbit eyes produces only sligh			
Chronic	Substance accumulation, in the human body, may occur and may cause some concern following repeated or long-term occupational exposure. There is some evidence that inhaling this product is more likely to cause a sensitisation reaction in some persons compared to the general population. There is limited evidence that, skin contact with this product is more likely to cause a sensitisation reaction in some persons compared to the general population. Main route of exposure to the gas in the workplace is by inhalation. Chronic exposure to alkyl ethers may result in loss of appetite, excessive thirst, fatigue, and weight loss. Long term, or repeated exposure of isopropanol may cause inco-ordination and tiredness. Repeated inhalation exposure to sopropanol may produce sleepiness, inco-ordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in adult animals. Isopropanol does not cause genetic damage. There are inconclusive reports of human sensitisation from skin contacts with isopropanol. Chronic alcoholics are more tolerant of the whole-body effects of isopropanol. Animal testing showed the chronic exposure did not produce reproductive effects. NOTE: Commercial isopropanol does not contain "isopropyl oil", which caused an excess incidence of sinus and throat cancers in isoproanol production workers in the past. "Isopropyl oil" is no longer formed during production of isopropanol.			
Dy-Mark Protech Dry Graphite Lubricant	TOXICITY Not Available	IRRITATION Not Available		
	τοχιςιτγ			
2-methylpentane	TOXICITY Oral (Rat) LD50; ~15.84 mg/kg ^[1]	IRRITATION Not Available		
2-methylpentane isopropanol				
	Oral (Rat) LD50; ~15.84 mg/kg ^[1] TOXICITY Dermal (rabbit) LD50: 12800 mg/kg ^[2] Inhalation(Mouse) LC50; 53 mg/L4h ^[2]	Not Available IRRITATION Eye (rabbit): 10 mg - moderate Eye (rabbit): 100 mg - SEVERE Eye (rabbit): 100 mg/24hr-moderate		
	Oral (Rat) LD50; ~15.84 mg/kg ^[1] TOXICITY Dermal (rabbit) LD50: 12800 mg/kg ^[2] Inhalation(Mouse) LC50; 53 mg/L4h ^[2] Oral (Mouse) LD50; 3600 mg/kg ^[2]	Not Available IRRITATION Eye (rabbit): 10 mg - moderate Eye (rabbit): 100 mg - SEVERE Eye (rabbit): 100mg/24hr-moderate Skin (rabbit): 500 mg - mild		
isopropanol	Oral (Rat) LD50; ~15.84 mg/kg ^[1] TOXICITY Dermal (rabbit) LD50: 12800 mg/kg ^[2] Inhalation(Mouse) LC50; 53 mg/L4h ^[2] Oral (Mouse) LD50; 3600 mg/kg ^[2] TOXICITY	Not Available IRRITATION Eye (rabbit): 10 mg - moderate Eye (rabbit): 100 mg - SEVERE Eye (rabbit): 100mg/24hr-moderate Skin (rabbit): 500 mg - mild		
isopropanol	Oral (Rat) LD50; ~15.84 mg/kg ^[1] TOXICITY Dermal (rabbit) LD50: 12800 mg/kg ^[2] Inhalation(Mouse) LC50; 53 mg/L4h ^[2] Oral (Mouse) LD50; 3600 mg/kg ^[2] TOXICITY Inhalation(Rat) LC50; >2 mg/L4h ^[1]	Not Available IRRITATION Eye (rabbit): 10 mg - moderate Eye (rabbit): 100 mg - SEVERE Eye (rabbit): 100mg/24hr-moderate Skin (rabbit): 500 mg - mild		
isopropanol	Oral (Rat) LD50; ~15.84 mg/kg ^[1] TOXICITY Dermal (rabbit) LD50: 12800 mg/kg ^[2] Inhalation(Mouse) LC50; 53 mg/L4h ^[2] Oral (Mouse) LD50; 3600 mg/kg ^[2] TOXICITY Inhalation(Rat) LC50; >2 mg/L4h ^[1] Oral (Rat) LD50; >2000 mg/kg ^[1]	Not Available IRRITATION Eye (rabbit): 10 mg - moderate Eye (rabbit): 100 mg - SEVERE Eye (rabbit): 100 mg/24hr-moderate Skin (rabbit): 500 mg - mild IRRITATION Not Available		

	× Aspiration Hazard				
Respiratory or Skin sensitisation	×	× STOT - Repeated Exposure ×			
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	×		
Skin Irritation/Corrosion	✓	Reproductivity	×		
Acute Toxicity	×	Carcinogenicity	×		
Dy-Mark Protech Dry Graphite Lubricant & ISOPROPANOL & GRAPHITE	Asthma-like symptoms may continue for months or even years after exposure to the material ends. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur after exposure to high levels of highly irritating compound. Main criteria for diagnosing RADS include the absence of previous airways disease in a non-atopic individual, with sudden onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. Other criteria for diagnosis of RADS include a reversible airflow pattern on lung function tests, moderate to severe bronchial hyperreactivity on methacholine challenge testing, and the lack of minimal lymphocytic inflammation, without eosinophila. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. On the other hand, industrial bronchitis is a disorder that occurs as a result of exposure due to high concentrations of irritating substance (often particles) and is completely reversible after exposure ceases. The disorder is characterized by difficulty breathing, cough and mucus production.				
Dy-Mark Protech Dry Graphite Lubricant & 2-METHYLPENTANE & GRAPHITE	No significant acute toxicological data identified in literature search.				
ISOPROPANOL	Isopropanol is irritating to the eyes, nose and throat but generally not to the skin. Prolonged high dose exposure may also produce depression of the central nervous system and drowsiness. Few have reported skin irritation. It can be absorbed from the skin or when inhaled. Intentional swallowing is common particularly among alcoholics or suicide victims and also leads to fainting, breathing difficulty, nausea, vomiting and headache. In the absence of unconsciousness, recovery usually occurred. Repeated doses may damage the kidneys. A decrease in the frequency of mating has been found in among animals, and newborns have been found to have a greater incidence of low birth weight. Tumours of the testes have been observed in the male rat. The material may cause skin irritation after prolonged or repeated exposure and may produce on contact skin redness, swelling, the production of vesicles, scaling and thickening of the skin. The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing.				
Dy-Mark Protech Dry Graphite Lubricant	Animal studies indicate that normal, branched and cyclic paraffins are absorbed from the gastrointestinal tract and that the absorption of n-paraffins is inversely proportional to the carbon chain length, with little absorption above C30. With respect to the carbon chain lengths likely to be present in mineral oil, n-paraffins may be absorbed to a greater extent than iso- or cyclo-paraffins. The major classes of hydrocarbons are well absorbed into the gastrointestinal tract in various species. In many cases, the hydrophobic hydrocarbons are ingested in association with fats in the diet. Some hydrocarbons may appear unchanged as in the lipoprotein particles in the gut lymph, but most hydrocarbons partly separate from fats and undergo metabolism in the gut cell. The gut cell may play a major role in determining the proportion of hydrocarbon that becomes available to be deposited unchanged in peripheral tissues such as in the body fat stores or the liver.				

Data available to make classification

SECTION 12 Ecological information

Dy-Mark Protech Dry Graphite Lubricant	Endpoint	Test Duration (hr)	Species	Value	Source
	Not Available	Not Available	Not Available	Not Available	Not Available
	Endpoint	Test Duration (hr)	Species	Value	Source
2-methylpentane	EC50(ECx)	96h	Algae or other aquatic plants	4.321mg/l	2
	EC50	96h	Algae or other aquatic plants	4.321mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
isopropanol	EC50(ECx)	24h	Algae or other aquatic plants	0.011mg/L	4
	LC50	96h	Fish	Fish 4200mg/l	
	EC50	72h	Algae or other aquatic plants	Algae or other aquatic plants >1000mg/l	
	EC50	48h	Crustacea	7550mg/l	4
	EC50	96h	Algae or other aquatic plants	>1000mg/l	1
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	72h	Algae or other aquatic plants	>=100mg/l	2
graphite	LC50	96h	Fish	>100mg/l	2
	EC50	72h	Algae or other aquatic plants	>100mg/l	2
	EC50	48h	Crustacea	>100mg/l	2
	Endpoint	Test Duration (hr)	Species	Value	Source
	NOEC(ECx)	48h	Crustacea	>4000mg/l	1
dimethyl ether	LC50	96h	Fish	1783.04mg/l	2
	EC50	48h	Crustacea	>4400mg/L	2

Continued...

		1		[
	EC50	96h	Algae or other aquatic plants	154.917mg/l 2	
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan, - Bioconcentration Data 8. Vendor Data				
Do NOT allow product to come in c	ontact with surface	e waters or to intertidal areas below the mean high wa	ater mark. Do not contaminate water when cle	aning equipment or disposing	
of equipment wash-waters.	a durat annat la a dian				
For Isopropanol (IPA):	oduct must be disp	bosed of on site or at approved waste sites.			
og Kow: -0.16- 0.28;					
lalf-life (hr) air: 33-84;					
lalf-life (hr) H2O surface water: 13 lenry's atm m3 /mol: 8.07E-06;	0;				
OD 5: 1.19,60%;					
COD: 1.61-2.30, 97%;					
ΓhOD: 2.4; 3OD 20: >70%.					
	d to partition prima	arily to the aquatic compartment (77.7%) with the rem	ainder to the air (22.3%), Overall, IPA present	ts a low potential hazard to	
quatic or terrestrial biota.					
•	• •	dly in aerobic, aqueous biodegradation tests and the		•	
•		for the volatilization from surface water (1 meter dep process for IPA, however; aerobic biodegradation of	,	, , ,	
	•	ater (72 to 78% biodegradation in 20 days).	in A has been shown to been rapidly under he		
Ferrestrial Fate: Soil - IPA is also no	ot expected to pers	sist in surface soils due to rapid evaporation to the air		t expected to partition to the	
· ·	U	ne soil due to its low soil adsorption. Plants - Toxicity nantly by hydroxy radical attack. The atmospheric ha		photolycic is not expected to	
be an important transformation pro			in-life is expected to be 10 to 25 hours. Direct	photolysis is not expected to	
	•	of acute aquatic toxicity and is not acutely toxic to fish	and invertebrates. Chronic aquatic toxicity ha	as also been shown to be of	
ow concern and bioconcentration in					
		ate of cleavage of the carbon-oxygen bond by abiotic cess since aliphatic ethers do not absorb light at way			
		stant: 1.69 atm-m3 mol; Vapor Pressure: 150 mm Hg	•	stated): 2.21; COD: 0.04;	
hOD: 3.52.					
		ectly broken down by sunlight. The main atmospheric potential of n-hexane is very low, compared to othe	-		
		hanisms for n-hexane degradation in the atmosphere			
have low potential for leaching into evaporate. Exceptions would involv soil. Once introduced into groundwi oxygen conditions), or, where nutrie groundwater. Pseudomonas mende presence of oxygen. The most impu unless the n-hexane is buried at so processes. Aquatic Fate: The dominant transpe estimated. The substance has very is not considered to be as rapid as Ecotoxicity: This substance is not e	the lower soil dept re locations with sh later, n-hexane may ants, such as nitrog coina bacteria have ortant biological bre me depth within a port process from wi low water solubility evaporation. N-Hei xpected to concen	e the main fate process of this substance in soil. The hs. n-Hexane is expected to generally stay near the hallow groundwater tables where large spills occur - in y be fairly persistent, since its degradation by water is gen or phosphorus, are in limited supply. Biological bi e been shown to break the substance down in ground eakdown process involves the conversion of n-hexan soil or sediment, evaporation is generally assumed to ater is evaporation, with an estimated half-life of <3 h y and is resistant to breakdown by water. Few data e xane may be persistent if released to deep sediment trate/accumulate in aquatic organisms or the food ch sent in solution. The substance is moderately toxic to	soil surface and, if not appreciably sorbed into n such cases, n-hexane would spread out to co s slow and opportunities for biodegradation ma- reakdown is probably the most significant degri- water and mixed/pure bacterial cultures can u- e to primary alcohols, aldehydes and, ultimate o occur at a much more rapid rate than chemic ours. For standing bodies of water, a half-life r xist for the biological breakdown of n-hexane i- ain. These substances are considered to be th	the soil matrix, will eventually contaminate a large volume of ay be limited, (due to low radation mechanism in tilize the substance, in the ely, into fatty acids. In general, cal or biochemical degradatior no longer than 6.8 days is in water, however; this proces he most readily biodegradable	
88sR52/53					
ersistence and degradability					
ngredient	Persistence: W	ater/Soil	Persistence: Air		
2-methylpentane	LOW		LOW		
sopropanol	LOW (Half-life =	14 days)	LOW (Half-life = 3 days)		
limethyl ether	LOW		LOW		
oaccumulative potential					
ngredient	Bioaccumulatio	on			
2-methylpentane	LOW (LogKOW	= 3.2145)			
sopropanol	LOW (LogKOW	= 0.05)			
dimethyl ether	LOW (LogKOW	= 0.1)			
	-				
obility in soil					
Constant Proved	Mahilita				

Ingredient	Mobility
2-methylpentane	LOW (KOC = 124.9)
isopropanol	HIGH (KOC = 1.06)
dimethyl ether	HIGH (KOC = 1.292)

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

DO NOT allow wash water from cleaning or process equipment to enter drains.
It may be necessary to collect all wash water for treatment before disposal.

In all cases disposal to sever may be subject to local laws and regulations and these should be considered first.
Where in doubt contact the responsible authority.
Consult State Land Waste Management Authority for disposal.
 Discharge contents of damaged aerosol cans at an approved site.
Allow small quantities to evaporate.
DO NOT incinerate or puncture aerosol cans.
Bury residues and emptied aerosol cans at an approved site.

SECTION 14 Transport information

Labels Required

Marine Pollutant	
HAZCHEM	Not Applicable

Land transport (ADG)

UN number	1950		
UN proper shipping name	AEROSOLS		
Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
Packing group	Not Applicable		
Environmental hazard	Environmentally hazardous		
Special precautions for user	Special provisions 63 190 277 327 344 381 Limited quantity 1000ml		

Air transport (ICAO-IATA / DGR)

UN number	1950			
UN proper shipping name	Aerosols, flammable			
Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L		
Packing group	Not Applicable			
Environmental hazard	Environmentally hazardous			
Special precautions for user	Cargo Only Maximum Passenger and Cargo Passenger and Cargo Passenger and Cargo	·		

Sea transport (IMDG-Code / GGVSee)

UN number	1950	1950		
UN proper shipping name	AEROSOLS	AEROSOLS		
Transport hazard class(es)				
Packing group	Not Applicable			
Environmental hazard	Marine Pollutant	Marine Pollutant		
Special precautions for user	EMS Number Special provisions Limited Quantities			

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
2-methylpentane	Not Available
isopropanol	Not Available
graphite	Not Available
dimethyl ether	Not Available

Transport in bulk in accordance with the ICG Code

Product name	Ship Type
2-methylpentane	Not Available
isopropanol	Not Available
graphite	Not Available
dimethyl ether	Not Available

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

2-methylpentane is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals

isopropanol is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australian Inventory of Industrial Chemicals (AIIC)

graphite is found on the following regulatory lists

Australian Inventory of Industrial Chemicals (AIIC)

dimethyl ether is found on the following regulatory lists

Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) -Schedule 5 Australian Inventory of Industrial Chemicals (AIIC)

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

International WHO List of Proposed Occupational Exposure Limit (OEL) Values for Manufactured Nanomaterials (MNMS)

Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

National Inventory	Status		
Australia - AIIC / Australia Non-Industrial Use	Yes		
Canada - DSL	Yes		
Canada - NDSL	No (2-methylpentane; isopropanol; graphite; dimethyl ether)		
China - IECSC	Yes		
Europe - EINEC / ELINCS / NLP	Yes		
Japan - ENCS	No (graphite)		
Korea - KECI	Yes		
New Zealand - NZIoC	Yes		
Philippines - PICCS	Yes		
USA - TSCA	Yes		
Taiwan - TCSI	Yes		
Mexico - INSQ	Yes		
Vietnam - NCI	Yes		
Russia - FBEPH	Yes		
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.		

SECTION 16 Other information

Revision Date	20/04/2022
Initial Date	15/09/2014

SDS Version Summary

Version	Date of Update	Sections Updated
12.1	10/02/2022	Classification, First Aid (swallowed)
13.1	20/04/2022	Acute Health (eye), Acute Health (inhaled), Acute Health (skin), Acute Health (swallowed), Appearance, Chronic Health, Classification, Fire Fighter (fire/explosion hazard), Ingredients, Physical Properties, Storage (storage requirement)

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors **BEI: Biological Exposure Index** AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.

